236 research outputs found

    Pixelwise Instance Segmentation with a Dynamically Instantiated Network

    Full text link
    Semantic segmentation and object detection research have recently achieved rapid progress. However, the former task has no notion of different instances of the same object, and the latter operates at a coarse, bounding-box level. We propose an Instance Segmentation system that produces a segmentation map where each pixel is assigned an object class and instance identity label. Most approaches adapt object detectors to produce segments instead of boxes. In contrast, our method is based on an initial semantic segmentation module, which feeds into an instance subnetwork. This subnetwork uses the initial category-level segmentation, along with cues from the output of an object detector, within an end-to-end CRF to predict instances. This part of our model is dynamically instantiated to produce a variable number of instances per image. Our end-to-end approach requires no post-processing and considers the image holistically, instead of processing independent proposals. Therefore, unlike some related work, a pixel cannot belong to multiple instances. Furthermore, far more precise segmentations are achieved, as shown by our state-of-the-art results (particularly at high IoU thresholds) on the Pascal VOC and Cityscapes datasets.Comment: CVPR 201

    Holistic, Instance-Level Human Parsing

    Full text link
    Object parsing -- the task of decomposing an object into its semantic parts -- has traditionally been formulated as a category-level segmentation problem. Consequently, when there are multiple objects in an image, current methods cannot count the number of objects in the scene, nor can they determine which part belongs to which object. We address this problem by segmenting the parts of objects at an instance-level, such that each pixel in the image is assigned a part label, as well as the identity of the object it belongs to. Moreover, we show how this approach benefits us in obtaining segmentations at coarser granularities as well. Our proposed network is trained end-to-end given detections, and begins with a category-level segmentation module. Thereafter, a differentiable Conditional Random Field, defined over a variable number of instances for every input image, reasons about the identity of each part by associating it with a human detection. In contrast to other approaches, our method can handle the varying number of people in each image and our holistic network produces state-of-the-art results in instance-level part and human segmentation, together with competitive results in category-level part segmentation, all achieved by a single forward-pass through our neural network.Comment: Poster at BMVC 201

    Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation

    Full text link
    We propose an approach to discover class-specific pixels for the weakly-supervised semantic segmentation task. We show that properly combining saliency and attention maps allows us to obtain reliable cues capable of significantly boosting the performance. First, we propose a simple yet powerful hierarchical approach to discover the class-agnostic salient regions, obtained using a salient object detector, which otherwise would be ignored. Second, we use fully convolutional attention maps to reliably localize the class-specific regions in a given image. We combine these two cues to discover class-specific pixels which are then used as an approximate ground truth for training a CNN. While solving the weakly supervised semantic segmentation task, we ensure that the image-level classification task is also solved in order to enforce the CNN to assign at least one pixel to each object present in the image. Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of 60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared to the published state-of-the-art results. The code is made publicly available

    Alpha MAML: Adaptive Model-Agnostic Meta-Learning

    Full text link
    Model-agnostic meta-learning (MAML) is a meta-learning technique to train a model on a multitude of learning tasks in a way that primes the model for few-shot learning of new tasks. The MAML algorithm performs well on few-shot learning problems in classification, regression, and fine-tuning of policy gradients in reinforcement learning, but comes with the need for costly hyperparameter tuning for training stability. We address this shortcoming by introducing an extension to MAML, called Alpha MAML, to incorporate an online hyperparameter adaptation scheme that eliminates the need to tune meta-learning and learning rates. Our results with the Omniglot database demonstrate a substantial reduction in the need to tune MAML training hyperparameters and improvement to training stability with less sensitivity to hyperparameter choice.Comment: 6th ICML Workshop on Automated Machine Learning (2019

    Straight to Shapes: Real-time Detection of Encoded Shapes

    Full text link
    Current object detection approaches predict bounding boxes, but these provide little instance-specific information beyond location, scale and aspect ratio. In this work, we propose to directly regress to objects' shapes in addition to their bounding boxes and categories. It is crucial to find an appropriate shape representation that is compact and decodable, and in which objects can be compared for higher-order concepts such as view similarity, pose variation and occlusion. To achieve this, we use a denoising convolutional auto-encoder to establish an embedding space, and place the decoder after a fast end-to-end network trained to regress directly to the encoded shape vectors. This yields what to the best of our knowledge is the first real-time shape prediction network, running at ~35 FPS on a high-end desktop. With higher-order shape reasoning well-integrated into the network pipeline, the network shows the useful practical quality of generalising to unseen categories similar to the ones in the training set, something that most existing approaches fail to handle.Comment: 16 pages including appendix; Published at CVPR 201

    Deep Virtual Networks for Memory Efficient Inference of Multiple Tasks

    Full text link
    Deep networks consume a large amount of memory by their nature. A natural question arises can we reduce that memory requirement whilst maintaining performance. In particular, in this work we address the problem of memory efficient learning for multiple tasks. To this end, we propose a novel network architecture producing multiple networks of different configurations, termed deep virtual networks (DVNs), for different tasks. Each DVN is specialized for a single task and structured hierarchically. The hierarchical structure, which contains multiple levels of hierarchy corresponding to different numbers of parameters, enables multiple inference for different memory budgets. The building block of a deep virtual network is based on a disjoint collection of parameters of a network, which we call a unit. The lowest level of hierarchy in a deep virtual network is a unit, and higher levels of hierarchy contain lower levels' units and other additional units. Given a budget on the number of parameters, a different level of a deep virtual network can be chosen to perform the task. A unit can be shared by different DVNs, allowing multiple DVNs in a single network. In addition, shared units provide assistance to the target task with additional knowledge learned from another tasks. This cooperative configuration of DVNs makes it possible to handle different tasks in a memory-aware manner. Our experiments show that the proposed method outperforms existing approaches for multiple tasks. Notably, ours is more efficient than others as it allows memory-aware inference for all tasks.Comment: CVPR 201

    Learn to Interpret Atari Agents

    Full text link
    Deep Reinforcement Learning (DeepRL) agents surpass human-level performances in a multitude of tasks. However, the direct mapping from states to actions makes it hard to interpret the rationale behind the decision making of agents. In contrast to previous a-posteriori methods of visualizing DeepRL policies, we propose an end-to-end trainable framework based on Rainbow, a representative Deep Q-Network (DQN) agent. Our method automatically learns important regions in the input domain, which enables characterizations of the decision making and interpretations for non-intuitive behaviors. Hence we name it Region Sensitive Rainbow (RS-Rainbow). RS-Rainbow utilizes a simple yet effective mechanism to incorporate visualization ability into the learning model, not only improving model interpretability, but leading to improved performance. Extensive experiments on the challenging platform of Atari 2600 demonstrate the superiority of RS-Rainbow. In particular, our agent achieves state of the art at just 25% of the training frames. Demonstrations and code are available at https://github.com/yz93/Learn-to-Interpret-Atari-Agents
    corecore